
Běžně používaná radiační terapie zabíjí rakovinné buňky tím, že způsobuje rozsáhlé poškození DNA v ozařované tkáni. Mezinárodní tým včetně několika výzkumníků z Ústavu molekulární genetiky Akademie věd ČR nyní odhalil neočekávanou strategii, jak se rakovinné buňky smrti vyvolané radiací vyhýbají - samy se dále poškodí. Studii zveřejnil Science 1, jeden z nejprestižnějších vědeckých časopisů.
Poškození DNA v lidských buňkách se vyskytuje přirozeně a je účinně opravováno velkým počtem opravných drah DNA. Tento proces však vyžaduje čas. Závislost rakovinných buněk na rychlém nekontrolovaném buněčném dělení je proto činí neschopnými vypořádat se s velkým poškozením DNA, které způsobují vysoké dávky záření. Radiační terapie tak účinně zabíjí nádorové buňky.
I přes obecnou úspěšnost radiace se nádory často vracejí. Mechanismy, jimiž se nádorovým buňkám daří vyhýbat se buněčné smrti po letálních dávkách ozáření, nejsou dobře známy, a proto rezistence vůči radiační terapii zůstává značnou výzvou pro účinnou klinickou kontrolu nádorů.
Sebepoškozením proti smrti
Tým vědců působících v Dánsku, České republice, Švédsku, Kanadě a Švýcarsku, jenž koordinuje Claus Storgaard Sørensen z Biotech Research and Innovation Centre, University of Copenhagen v Dánsku, zjistil, že v reakci na záření mohou nádorové buňky aktivovat endogenní nukleázu CAD - enzym, který rozkládá nukleové kyseliny (včetně DNA) v celém genomu. Zatímco přetrvávající poškození DNA je pro buňku obecně špatné, mezinárodní výzkumný tým ukázal, že poté, co radiační terapie způsobí počáteční poškození DNA, si rakovinné buňky způsobí další zlomy DNA samy. Tím účinně pozastaví svůj program dělení a buněčný cyklus v takzvaném kontrolním bodě G2 před začátkem buněčného dělení, což jim poskytne čas na opravu zbývajícího poškození DNA.
Tato velmi překvapivá a poněkud neintuitivní strategie přidávání cílených zlomů DNA zlepšuje šanci rakovinných buněk smrtelné dávky záření přežít. Lze je přirovnat např. k vojákům ve válce, kteří se sami zraní, aby nemohli být posláni do boje.
Konkrétněji mechanismus vysvětluje prof. MUDr. Jiří Bártek, CSc. z Ústavu molekulární genetiky AV ČR (ÚMG AV ČR), jeden z vedoucích autorů výzkumu: „Zatímco normální buňky obvykle přeruší své cykly dělení v tzv. kontrolním bodě G1 fáze, je tento mechanismus většinou u rakovinných buněk defektní. Proto hlavní možností, jak zabránit katastrofickému buněčnému dělení s poškozenými chromozomy, které by dělící se buňky zabilo, je zůstat v druhém kontrolním bodě G2 fáze těsně předtím, než se buňky začnou dělit. Mnoho defektů způsobených CAD „říká" nádorovým buňkám, aby počkaly, dokud neopraví nebezpečnější zlomy DNA vyvolané radioterapií."
Zablokováním k posílení léčby
Autoři navíc zjistili, že tento jev je specifický pro rakovinné buňky. Ztráta aktivity CAD totiž způsobí, že rakovinné buňky (proti normálním buňkám) jsou náchylné k poškození, které způsobuje záření. „Tento neočekávaný nový mechanismus skutečně naznačuje, jak se rakovinné buňky mohou přizpůsobit poškození DNA vyvolanému ozářením, a tím se stát odolnějšími vůči radioterapii," vysvětlují Pavel Janščák a Václav Urban z ÚMG AV ČR, kteří se na tomto objevu podíleli a jsou spoluautory nového vědeckého článku.
Souhrnně tyto poznatky ozřejmují mechanismus přežití specifický pro rakovinu. Ten by se dal v budoucnu zaměřit a využít ke zvýšení zranitelnosti nádorových buněk vůči genotoxické léčbě rakoviny. Studie také ukázala, že experimentální blokování funkce CAD způsobilo, že nádorové buňky (na rozdíl od normálních, zdravých buněk) byly vůči záření citlivější, což naznačuje, jak by tyto nové poznatky mohly být využity ke zlepšení výsledků radioterapie v budoucnu.
Zdroj: Tiskové oddělení AV ČR, Ústav molekulární genetiky AV ČR
Literatura:
1. Larsen, B. D., Benada, J., Yung, P. Y. K., Bell, R. A. V., Pappas, G., Urban, V., Ahlskog, J. K., Kuo, T. T., Janscak, P., Megeney, L. A., Elsässer, S. J., Bartek, J., & Sørensen, C. S. (2022). Cancer cells use selfinflicted DNA breaks to evade growth limits imposed by genotoxic stress. Science (New York, N.Y.), 376(6592), 476-483. https://doi.org/10.1126/science.abi6378
Mezinárodní federace Červeného kříže a Červeného půlměsíce, Mezinárodní federace dárců krve a Mezinárodní společnosti transfúzního lékařství se spojily a vznesly myšlenku vyhlášení Světového dne dárců krve. 14. června veřejně děkují těm, kteří darují krev, protože právě dárci krve zachraňují denně mnoho životů po celém světě. V tento den se narodil držitel Nobelovy ceny Karl Landsteiner, který objevil Rh faktor v krvi. Odběr plné krve trvá přibližně 5 až 10 minut, odebírá se 450 ml. Přístrojové odběry krevních složek trvají kolem hodiny, nejčastěji se tímto způsobem odebírá plazma a krevní destičky.
Ojedinělý on-line kongres s problematikou lidského mikrobiomu, který připravila společnost Healthcomm Professional a akreditovala ho u ČLnK, končí 7. června. Nyní můžete lektorům zasílat své doplňující otázky k jejich sdělením. Odpovědi zveřejníme v prostředí kongresu a následně na Magazínu. Na akci, která byla ohodnocena 10 body do systému CV, se můžete přihlásit přes banner na Magazínu nebo na stránkách www.healthcomm.cz
Dny otevřených center pro léčbu migrény se letos odehrají v šesti regionech. První specializované centrum otevře své dveře 1. června v 15:00 v Městské poliklinice Praha. Od 15:00 do 18:00 budou k dispozici také individuální konzultace s odborníky přímo na místě. 14. června bude akci následovat centrum v Nemocnici Teplice. Do podzimní vlny se zapojí další čtyři nemocnice. Na akci se představí i pacientská organizace Migréna-help. Detaily k akci na www.omigrene.cz.